If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x-1.095=0
a = 1; b = 1; c = -1.095;
Δ = b2-4ac
Δ = 12-4·1·(-1.095)
Δ = 5.38
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{5.38}}{2*1}=\frac{-1-\sqrt{5.38}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{5.38}}{2*1}=\frac{-1+\sqrt{5.38}}{2} $
| 3+x1=-3 | | 7+k=49k | | 2n-7=8-3 | | x+13=5x-39 | | p/8-19=-26 | | 7m-3=-3 | | 7+x+18+x16=x+35 | | 50x+5=1.25 | | x+22=4x-35 | | 10y+10=4-4 | | x^2+x-1.07=0 | | 3.6/r=6 | | 6n+1-8=-1 | | 6p-7=73 | | 5-(x+10)=2x-23 | | 1.25(50)+5=x | | 30+6p=(42+7p)-5 | | 5(-1+r)=-10 | | x^2+x-2.19=0 | | 4.3c-6=3(2c+3) | | 8x-5x=-21 | | -9=3-4k | | 50=1.25x+5 | | 6(-2n-3)+1=-8n-29 | | 4=80/q | | 4(y-2)-5(y+1)=y-13 | | x^2+x-0.875=0 | | 3.6y9=5.4+3.3y | | (3/5)e-6=-(2/5e)+4-7 | | 80/q=4 | | (-3)+p/7=(-5) | | 51/5+13/10w=13 |